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Abstract
The spindle checkpoint, which blocks segregation until all sister chromatid pairs have been
stably connected to the two spindle poles, is perhaps the biggest mystery of the cell cycle. The
main reason seems to be that the spatial correlations imposed by microtubules between stably
attached kinetochores and the nonlinear dependence of the system on the increasing number of
such kinetochores have been disregarded in earlier spindle checkpoint studies. From these
missing parts a non-equilibrium collective spindle–chromosome interaction is obtained here for
budding yeast (Saccharomyces cerevisiae) cells. The interaction, which is based on a
non-equilibrium statistical mechanics, can sense and count the number of stably attached
kinetochores and sense the threshold for segregation. It blocks segregation until all sister
chromatids pairs have been bi-oriented and regulates tension such that segregation becomes
synchronized, thus explaining how the cell might decide to segregate replicated chromosomes.
The model also predicts kinetochore oscillations at a frequency which agrees well with
observation. Finally, a relationship between this spindle–chromosome dynamics and the
force-extension formula obtained in a single DNA molecule experiment is obtained.

S Supplementary data are available from stacks.iop.org/JPhysCM/21/502101/mmedia

1. Introduction

An understanding of the mechanism by which cells decide to
block or permit segregation of replicated chromosomes would
not only improve the knowledge about normal cells but almost
certainly also give better insight into cancerous cell division.
This mechanism, the so-called spindle checkpoint, blocks
segregation until all sister chromatid (SC) pairs have been (bi-
oriented) stably attached at their kinetochores by microtubules
(MTs) from the two spindle poles and assembled (aligned) at
the metaphase plate [1–6] (figure 1). Kinetochores are highly
specialized protein complexes assembled on centromeric
DNA [7–9]. It is thought that the spindle checkpoint could
monitor the kinetochore–spindle interaction [4], which, apart
from MTs and kinetochores, is mediated by different molecular

motors and many other proteins [1, 5, 8]. However,
three conditions that uniquely determine the form of this
interaction have been disregarded in earlier spindle checkpoint
studies: (1) the spatial correlations induced by the MTs
and the two spindle poles between the stably attached
kinetochores and between the forces acting on them, (2) the
non-equilibrium equation for attachment of MT plus-ends
to kinetochores and (3) the initial boundary constraints for
these two reactants. Without spatial correlations that generate
position-dependent forces, bi-oriented SC pairs could not
assemble on the metaphase plate [5, 8] and without the
increase in attachments the cell could not reach the segregation
threshold. In the absence of spatial correlations and initial
constraints the cell could not sense and count the number
of stably attached kinetochores and could not sense the
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Figure 1. Schematically depicted mitotic spindle in late metaphase.
The two spindle poles are located on the x1-axis and the metaphase
plate in the x2x3 plane. In budding yeast the kinetochores are more
clustered around the centre of mass, rcm = (0, 0, 0), rather than
dispersed on the metaphase plate, hence d ≈ 0. The kinetochore
cluster is then stretched along the x1 ≡ x axis and the spacing in this
one-dimensional ‘lattice’ is �1 ≡ �. Once the last SC pair is
bi-oriented and located at the metaphase plate, APC is activated by
Cdc20 and the SC pairs synchronously separated.

segregation threshold. The spindle checkpoint problem
has been obscured also by variable chemical and dynamic
properties of MTs and kinetochores [7–9], such as the rapid
growth and shrinkage (‘dynamic instability’) of MTs [10] and
the poleward movement of tubulin [11].

When an SC pair is bi-oriented the attaching MTs
exert opposite pulling forces on the two sister kinetochores,
generating tension in the centromeric chromatin loops (C-
loops) [12] (figure 2). Only kinetochore-MT arrangements that
create normal tension become stabilized [6, 13]. Centromeric
tension is in turn balanced by cohesive forces (figure 2), which
are mediated by cohesin protein complexes that keep the SCs
tethered in pairs [14–16] before and during the spindle–SC
assembly [17, 18]. The removal of cohesin is induced by
the anaphase-promoting complex (APC), after activation by a
protein Cdc20 and phosphorylation by kinases such as Cdk1
and Plk1 [1]. In the absence of tension, after phosphorylation
of some kinetochore protein subunits by kinases, such as Mps1,
Ilp1/Aurora B and Plk1, unattached kinetochores bind Cdc20
with Mad and Bub proteins in a mitotic checkpoint complex
(MCC) [1, 2, 8], explaining how the blocking mechanism
works at a single kinetochore. But how this machinery works
collectively and quantitatively has been classed as one of the
big mysteries of the cell cycle [2]. The combination of the
non-equilibrium attachment reaction and the initial boundary
constraints with the spatial correlations, which induces a
nonlinear cooperative type dynamics driven by the increasing
number of stably attached kinetochores, places the spindle
checkpoint problem in an unexplored gap between molecular
biology and condensed matter physics [19].

Figure 2. Bi-oriented sister chromatid pair. (a) Chromosome arms
are tethered by interstrand cohesin and C-loops by intrastrand
cohesion. (b) Centromeric tension T is balanced by cohesive forces
C from interstrand cohesin, which connects the two centre springs
representing the C-loops, and by poleward forces F generated and
regulated by the stably connected part of the spindle–SC system. The
stably attached MT is enclosed by a sleeve-like complex of Ndc80
and Dam1 ring proteins, and connected to the inner kinetochore plate
by sleeve springs.

A solution, a non-equilibrium collective spindle–SC
interaction, is obtained here for budding yeast (S. cerevisiae).
In this case a single MT attaches to each kinetochore [4],
making the problem simpler compared to other species. The
collective interaction, which is based on a non-equilibrium
statistical mechanics, can sense and count the number of stably
attached kinetochores. It senses the threshold for segregation,
blocks segregation until all SC pairs have been bi-oriented
and regulates tension and cohesion such that segregation is
synchronized [1]. The model thus provides answers as to
how the spindle checkpoint machinery could work and how
the cell might decide to segregate replicated chromosomes. It
also predicts kinetochore oscillations at a frequency that agrees
well with observation [20]. Finally, a relationship between
the obtained collective spindle–DNA dynamics and the force-
extension formula [21] assessed on a single DNA molecule in
the laboratory is obtained.

2. A non-equilibrium statistical mechanics

The dynamic instability of MTs ensures a rapid regulation
of the key reactant densities, a prerequisite for a successful
spindle assembly [5]. But it has not been possible to link
any of the variable chemical and dynamic properties of the
spindle–SC system [5, 7–11] to the quantitative behaviour of
the spindle checkpoint machinery, i.e. to the switch-like all-
or-none transition to anaphase once all SC pairs have been
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bi-oriented [4]. Therefore, instead of an attempt to model
the regulation of the key reactants in detail, it might be a
better strategy to formulate a dynamics in terms of their bulk
properties.

It seems reasonable to assume that the volume average
density ψ of kinetochores attached by MT plus-ends during
the spindle assembly should increase linearly with each of
the volume average densities of MT plus-ends ρ and vacant
kinetochores σ according to

dψ

dt
= kρσ − k ′ψ, (1)

k and k ′ being the on and off rate constants. The two
reactant densities depend on each other via the initial boundary
conditions, ρ0 = ρ + ψ and σ0 = σ + ψ , where ρ0 and σ0

are the initial reactant densities. With these constraints inserted
equation (1) becomes

dψ

dt
= k((a − ψ)2 − (a2 − b2)), (2)

where a = (ρ0 + σ0 + K )/2, K = k ′/k and b2 = ρ0σ0.
As ρ denotes only the MT plus-ends, equations (1) and (2)
should hold, regardless of from which MT organizing centre
the MTs grow and when these centres reduce to the two
spindle poles (figure 1) [17, 22]. By removing inappropriate
attachments, apart from an impact on turnover of reactant
densities, Ilp1/Aurora B can increase k ′ [4, 7] and promoters
of MT nucleation and stabilization, such as GTPase Ran [17]
and CLASP proteins [7], can increase k. By transporting
mono-oriented SC pairs to the metaphase plate, CENP-E motor
proteins too can increase k [18]. The solution to equation (2) is

ln

(
ρ ′

σ ′
σK

ρK

)
= k(ρK − σK )t ≡ 2kagt, (3)

where ρ ′ = ρK − ψ and σ ′ = σK − ψ are here called
‘dynamic’ reactant densities, ρK = a(1 + g) > ρ0 and
σK = a(1 − g) < σ0 ‘screening’ and ‘screened’ reactant
densities (figure 3), and g2 = (a2−b2)/a2. Hence ρK = ρ ′+ψ
and σK = σ ′ + ψ work as dynamic boundary constraints.

In the high affinity limit (k ′ → 0), where ρK , σK , ρ ′
and σ ′ become the usual reactant densities, ρ0, σ0, ρ and
σ , equation (3) and the following calculations would become
much simpler. But as detachment is crucial for the polar
ejection forces and the spindle assembly [5], k ′ is kept nonzero.
The density of MT plus-ends is much larger than that of
kinetochores, ρK � σK , hence g = (ρK − σK )/(ρK +
σK ) ≈ 1. However, g will play a role as a coupling
constant in the spindle–SC interaction and is therefore kept
different from one throughout the calculations. Despite the
variable chemical and dynamic properties of kinetochores and
MTs [5, 7–11] the system becomes sufficiently rigid to create
position-dependent forces [5], without which bi-oriented SC
pairs would not be able to correlate spatially at the metaphase
plate. However, spatial correlations combined with the non-
equilibrium chemical reaction (equation (2)) create in turn
problems beyond the established knowledge in physics.

Under conditions of chemical equilibrium (dψ/dt =
0), ψ(r) would be a constant in time, hence normalizable,

Figure 3. The different kinetochore densities. (a) Bare kinetochore.
(b) Kinetochore screened by three unattached MT plus-ends.
(c) Previous kinetochore unstably attached by two MTs. (d) Previous
kinetochore stably attached by an MT from one of the two spindle
poles. The sister chromatids (dotted lines) are exposed to the same
mixture of adjacent MT plus-ends.

∫
ψ(r) dr = 1, and proportional to the probability density

of finding one stably attached kinetochore at an arbitrary
site r = (x1, x2, x3). The conformational distribution of
a ‘lattice’ of n such complexes at sites rλ could then be
written as in the freely jointed chain (FJC) model [23], ϕ =
μψ(r1)ψ(r2)ψ(r3) · · ·ψ(rn)/an. In the actual system the
unstable attachment density ψu becomes a constant in time,
hence normalizable, when the rate of detachment equals that
of the unstable attachment, dψu/dt = 0. However, the
density of stably attached kinetochores ψs increases with
time and is therefore not normalizable, hence proportional
to the probability density of finding between zero and any
integer or fractional number of stably attached kinetochores at
rλ. Therefore, to ensure a given number of stably attached
kinetochores, the FJC distribution must be averaged over all
orders:

ϕ = μ

∞∑
n=0

(
1

a

)n n∏
λ=0

ψ(rλ, t), (4)

where ψ(rλ, t) = ψs(rλ, t) + ψu(rλ). The zeroth-order term,
�ϕ = μψ(r0, t) = μ, accounts for unstable attachments
before stable attachment has started. The network of almost
rigid stably attached MTs should inhibit rapid oscillatory
movements of individual stably attached kinetochores. As the
average transport of SC pairs is directed towards the metaphase
plate [5, 17, 18] pair-wise oscillations of sister kinetochores
should also be absent in the average forces. Accordingly, the
system should be dominated by a ‘slower’ dynamics in which
the average spacing between stably attached kinetochores,
〈|�xiλ|〉 = �i , the lattice lengths Li and all distances
shorter than a certain ‘coherence length’ l, can be neglected
in comparison with an infinitely long ‘wavelength’ of ‘zero-
frequency’ oscillations (absence of oscillations). As ψ is then
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space-independent equation (4) becomes

ϕ = μ

∞∑
n=0

(
ψ

a

)n

= μ

1 − ψ/a
, (5)

as if all kinetochores were clustered in one point. The time
derivative of ϕ becomes

dϕ

dt
= μ

a

1

(1 − ψ/a)2
dψ

dt
, (6)

which shows that the non-equilibrium attachment reaction
(equation (2)) controls the entire system in the limit of slowly
varying dynamics. Interestingly, equation (5) corresponds
formally to the grand partition function in equilibrium
statistical mechanics and ψ/a to the fugacity [24], which
is here regulated by the non-equilibrium attachment reaction
(equation (2)).

But the question is if kinetochores actually become
clustered in space. Yes, clusters of kinetochores are observed
in budding yeast [8]. A contact within the distance l between
an MT plus-end and a kinetochore, whether mediated by a
protein, a chromosome arm or an MT (figure 4), should hence
be counted as point-like in the sense of equation (1), the
crucial question being if physical contact has been established
or not. Such contacts, involving chromokinesins [25, 26]
and chromosome arms, induce the polar ejection forces
(figure 4), which transport SC pairs to the metaphase
plate [5, 26]. Cytoplasmic dynein motor proteins [27] and MT
depolymerization in kinetochores [28] are thought to move the
SC pairs polewards until the increasing density of MTs near the
spindle poles makes the polar ejection forces strong enough
to move the SC pairs back antipolewards (figure 1), creating
an oscillatory movement [25, 29–31]. But as mentioned
before, the average transport of SC pairs is directed towards
the metaphase plate [5, 17, 18], suggesting that the collective
spindle–SC interaction is independent of such ‘directional
instability’ effects [30]. In this average dynamics the transport
of bi-oriented SC pairs to the metaphase plate is reduced to a
time lag.

3. A collective spindle–chromosome interaction

By insertion of equation (2), equation (6) yields the time
evolution of the total number ϕ = ϕs+ϕu of stable and unstable
attachments in the spindle volume:

dϕ

dt
= ka

μ
(μ2 − g2ϕ2), (7)

which has the solutions ϕ(t) = ±(μ/g) tanh(kagt) and ϕ =
±μ/g. To ensure that all SC pairs have been bi-oriented and
assembled at the metaphase plate, they must be exposed to MT
plus-ends for a sufficiently long time 2t0. This requirement
and normalization of ϕ can be accounted for by a so-called
topological quantization [32], ϕs(t0)−ϕs(−t0) = 2N = 2μ/g,
t0 � 1/kag, whereby �ϕ is automatically subtracted out.
N then becomes the total number of bi-oriented SC pairs,
ensuring that the correct number of chromosomes will be
segregated.

Figure 4. Polar ejection forces. In the spatially coherent
approximation all physical contacts within a certain radius l
(coherence length) between a kinetochore and an MT plus-end are
counted as point-like in the sense of equation (1). Polar ejection
forces are transferred via such contacts mediated by MTs,
chromosome arms and chromokinesin motor proteins.

A detailed dynamics in three spatial dimensions would
probably be more complex than a liquid crystal system [19].
But the genome conserving solution ϕ(t) can also be
interpreted as a travelling wave ξ(xi ) = ϕ/N = tanh(gxi/�i)

that describes the growth of the ‘lattice’ of stably attached
kinetochores in the continuum limit (�i = Li/2N → 0) [33],
xi = tνi and νi = �i ka being the path and velocity of
the wave along the xi axis. Such a form of bi-orientation
may appear too ordered in comparison with the real case,
however, the travelling wave solution emerges in the spatially
coherent dynamics (�i ≈ 0) near the spindle checkpoint where
the actual order should be less important. In S. cerevisiae
kinetochores appear to be clustered at the centre of mass rcm =
(0, 0, 0) on the metaphase plate rather than dispersed [8].
Moreover, as the cluster is then extended along the x1 axis
perpendicular to the metaphase plate (figure 1) the spatial index
can be dropped. The travelling wave equation is obtained
from equation (7), (1/ν)dξ/dt = dξ/dx = g(1 − ξ 2)/� ≡
(2V0)

1/2, but can also be generated by the double-well potential
V0(ξ) = g2(1 − ξ 2)2/(2�2) [32] which is symmetric under
inversion, ξ → −ξ . It will be interesting to see if this
potential can generate also other spindle checkpoint properties
and functions.

The derivative of (dξ/dx)2 = 2V0, 2(d2ξ/dx2) dξ/dx =
2(dV0/dξ) dξ/dx , yields the static part of the second-order
equation of motion of the actual lattice in the continuum
limit [32, 33]:

η
d2ξ

dt2
− ε

d2ξ

dx2
= −ε dV0

dξ
, (8)

where the time-dependent term corresponds to the acceleration
in Newton’s force law, η = ε/s2 is the linear mass density,
ε the elastic modulus, ξ the deformation (average lattice
stretch) and s the velocity for propagation of kinetochore
oscillations [20] which in S. cerevisiae should be damped out
during the metaphase where chromosome arms in SC pairs
are still tethered by cohesin [34]. Before anaphase entry,
each attachment should then create an equal stretch D in
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centromeric chromatin along the x axis (figure 2(a)). The
variable ξ can then also denote the average stretch χ/D =
〈χλ/D〉 = (χλ/D)/2N , where χλ is 2D, D or 0 if
the λth kinetochore belongs to a bi-oriented (figure 2(a)),
mono-oriented or unattached SC pair, respectively. The non-
equilibrium free energy density is defined by the Hamiltonian,
H = η(dξ/dt)2/2+ε(dξ/dx)2/2+εV0(ξ) [35], which shows
that the entire system is symmetric under inversion of ξ .

4. Kinetochore oscillations

About 5 min after the start of anaphase the stably attached
kinetochores are observed to oscillate at a frequency
f = 1 min−1 [20]. To see if this oscillation can be
described by the collective spindle–SC interaction, a time-
dependent solution ξ(x, t) = ξ(x) + eiωtζ(x) is inserted in
equation (8). Linearization around small perturbations ζ(x)
gives a Schrödinger-like equation (−d2/dx2 + V ′′

0 (ξ))ζn(x) ≡
(−d2/dx2 + 4g2/�2 − 6(g2/�2)/ cosh2(gx/�))ζn(x) =
(ω2

n/s
2)ζn(x) which is exactly solvable [32]. It yields a

discrete spectrum, fn = ωn/2π = sg
√
(n(4 − n))/(2π�),

n = (0, 1), and a continuum, ω2
q = (4 + q2)s2g2/�2, where

ωth = 2sg/� is a so-called branch point which here works
as a threshold for segregation of the SC pairs and q � 0
determines the velocity of the segregated chromosomes. An
estimate of the spacing � between kinetochores and of the
velocity s for propagation of oscillations in the lattice will
show if the frequency derived from the model has the same
order of magnitude as the frequency observed.

As tension variations in MTs can propagate almost
instantly at over 100 m s−1 [36], the time for such perturbations
can be neglected. The velocity in chromatin is assumed to be
equal to that of anaphase centromere movement in an SC pair,
s ≈ (0.33 ± 0.16) μm min−1 [20]. After 5 min in anaphase
kinetochores have thus travelled at most (1.65 ± 0.8) μm from
the metaphase plate, implying that the 32 kinetochores are
spread out within some (3.3 ± 1.6) μm about the metaphase
plate with an average spacing � ≈ (0.103 ± 0.050) μm.
With g ≈ 1 the discrete spectrum thus predicts stable
kinetochore oscillations at n = 1, f ≈ √

3sg/(2π�) ≈
(0.88 ± 0.43) min−1 (wavelength λ = s/ f ≈ 0.38 μm).
However, as the model describes an approximate average type
dynamics, these numbers should be taken with caution. The
zero frequency at n = 0 corresponds to the assumption that
oscillations do not contribute to the average dynamics. The
threshold for segregation, ωth = 2π fth = 2sg/�, which can
also be obtained from the discrete spectrum at n = 2 [32],
can be viewed as an attempt of the system to oscillate at
a ‘frequency’ fth = sg/(π�) ≈ (1.02 ± 0.49) min−1

(‘wavelength’ λth = s/ fth ≈ 0.32 μm), however, at which
the SC pairs become separated.

5. A nonlinear elastically braced string of chromatin

The symmetric dynamics yields two ‘unphysical’ features:
(1) the system is excited, V0(0) �= 0, in the absence of stable
attachments (at ξ = ϕ/N = 0) and (2) the number of stably
attached kinetochores is negative, ξ = ϕ/N < 0, for t < 0.

Figure 5. The tension–attachment relationship. Curve denoting the
average force F as a function of ξ , the number of stably attached
kinetochores relative to the total number N of bi-oriented sister
chromatid pairs. In budding yeast (N = 16) F becomes a good
approximation of the actual tension in the interval 1.8 � ξ � 2.0
where only one SC pair remains to be bi-oriented.

However, these flaws are removed when all SC pairs have
been stably attached to the two spindle poles. Mediated by
kinetochore oscillations, the spindle–SC system can then relax
by a spontaneous shift of order parameter, ξ → −1 + ξ ,
implied by the instability of the local maximum of V0(ξ) at ξ =
0. After this shift the number of stably attached kinetochores is
positive definite, ϕ(t) � 0, at all times and the shifted potential
V (ξ) = D2εg2ξ 2(2 − ξ)2/(2�2) vanishes in the absence of
attachments (at ξ = 0).

Equation (8) multiplied by D2 then becomes

D2η
d2ξ

dt2
− D2ε

d2ξ

dx2
= −dV

dξ
≡ F(ξ)

= −κ
2
ξ(1 − ξ)(2 − ξ), (9)

where κ = 4D2εg2/�2 = Dksp is the effective spring
constant, ksp = 0.1 pN nm−1 [31] the Hookean spring
constant and D = 400 nm [20], hence κ = 40 pN.
Equation (9) thus describes the lattice of stably attached
kinetochores along the x-axis as a nonlinear elastically braced
string [35] of ‘overlapping’ centromere flanking chromatin
loops, which together with MTs, kinetochore proteins, cohesin
and histones [37] determine the elasticity. The average
force F(ξ) (figure 5) acting on and between (figure 2) sister
kinetochores, and hence also tension, now vanish at ξ = 0 and
ξ = 2 as required by a realistic model.

When no kinetochores (ϕ = 0, ξ = 0) are stably attached,
and when all SC pairs (ϕ = 2N , ξ = 2) are bi-oriented
and assembled at the metaphase plate, F equals the actual but
vanishing tension. But already when N − 1 SC pairs have
been bi-oriented (ϕ = 2N − 2), F(ϕ/N) is approximately
equal to the actual centromeric tension (figure 5) and hence
to cohesion (figure 2(b)), because then only one SC pair
remains to come under tension. The collective force F(ϕ/N)
then describes how the remaining tension and hence cohesion
become equally shared between bi-oriented SC pairs and how
tension and cohesion depend nonlinearly on the number of
stable attachments [4]. The equal sharing of cohesion ensures
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in turn stability in all bi-oriented SC pairs in metaphase [6, 13]
and thereby a synchronized vanishing of tension and cohesion
by a simultaneous removal of the last linkages at the telomeres.
By this genome-wide control of tension and cohesion across
sister centromeres, the collective spindle–SC interaction thus
blocks segregation until all SC pairs have been bi-oriented
and aligned at the metaphase plate, ensuring segregation
synchronization and genome integrity [1, 4, 38]. It has been
shown that tension regulates phosphorylation of kinetochore
substrates [39], such as Dam1 and Ndc80 [13] (figure 2),
and hence attachment stability, by modulating the distance
between Ilp1/Aurora B kinase and kinetochores [40]. On
the molecular level tension and cohesion are mediated and
regulated by factors, such as cohesin, Sgo1, Rad61/Wapl,
Eco1 and Mec1 [4, 14–16, 34, 41–43]. However, in addition
to their functions these molecules and all other factors
must comply with equations (2) and (5) and can hence be
regarded as enslaved by the collective spindle–SC interaction
(equation (9)).

6. A mapping from attachment to collective
interaction

In this model the order parameter ϕ approaches 2N contin-
uously, because the density of stably attached kinetochores
ψs is a continuous variable, implying that segregation erro-
neously seems to occur promptly once all SC pairs have been
bi-oriented and aligned. However, in reality ϕ and hence also
tension and cohesion change with the increasing number of
stably attached kinetochores in a discrete stepwise manner.
The collective spindle–SC interaction thus predicts a stepwise
partial removal of cohesion already during metaphase, with-
out proteolytic cleavage of cohesin molecules which can then
be relocated to the chromatin [34]. Anaphase starts with bi-
orientation of the last SC pair (ϕ = 2N) followed by the ob-
servable oscillatory relaxation of the last portion of tension.
This suggests that concomitant conformational changes in the
MCC complexes might reposition Cdc20 such that APC be-
comes activated [44], the protecting protein securin destroyed
and cohesin cloven by the protease separase [45].

The dependence of ϕ on ψs is obtained by eliminating
the explicit dependence on time of the shifted order parameter
solution ϕ(t) = N(1 + tanh(kagt)) and of equation (3). But
whereas equations (1)–(3) admit the start of stable attachment
at t = 0, in ϕ(t) this can start already at some large negative
time t ≈ −t0, t0 � 1/kag. Accordingly, the difference,
which is just the constant term ϕ(0) = N , can be accounted
for by shifting time in ϕ(t), t → t − t0. By insertion of
equation (3), ϕ(t) can then be written as a dose–response
function, ϕ(ψs) = 2N(ρ ′/σ ′)/((ρ ′/σ ′) + E(t0)), where
E(t0) = (ρK /σK ) exp(2kagt0) = (ρK /σK ) exp(k(ρK −σK )t0)
accounts for the time lag. The dynamic reactant densities
ρ ′(t) = ρR0 −ψs(t) and σ ′(t) = σR0 −ψs(t) are here defined
as before, however, with ‘renormalized’ initial densities, ρR0 =
ρK − ψu and σR0 = σK − ψu. Unstable attachments are
then given a role as background to which SC pairs are exposed
(figures 3), like a medium that braces the stably connected part
of the spindle–SC system. In the limit k ′ = 0, where also

ψu = 0, the renormalized densities too attain the bare values,
ρR0 → ρK → ρ0 and σR0 → σK → σ0.

The order parameter, which can also be written as ϕ(ψs) =
2N(ρR0−ψs(t))/(σR0−ψs(t))/((ρR0−ψs(t))/(σR0−ψs(t))+
E(t0)), provides a coarse-grained mapping from the molecular
level, at which MT plus-ends attach vacant kinetochores and
the density ψs(t) is the so-called reaction coordinate, to the
collective level at which the number of stable attachments ϕ is
counted and the all-or-none decision to segregate the SC pairs
is made. This takes place at ψs = σR0 (σ ′ = 0) when all
kinetochores are stably attached by MTs, ϕ(σR0) = 2N , as
required by the spindle checkpoint premises. As ρK � σK

it follows that E(t0) is large and ϕ(0) ≈ 0 as required by
a realistic spindle–SC interaction, ϕ(ψs) here denoting just
the number of stably attached kinetochores. The contribution
�ϕ ∼ ϕu of unstable attachments, which cause polar ejection
forces, was removed from ϕ by the shift ξ → −1 + ξ, (ϕ →
−N + ϕ), hence �ϕ = N .

The order parameter ϕ(ψs) thus enables the spindle–SC
system to sense and count the number of stably attached
kinetochores, to sense the critical threshold for segregation at
ϕ = 2N , and hence to distinguish budding yeast (N = 16)
from human cells (N = 46) and others. Equation (8) shows
that polar ejection forces dominate the collective interaction
before ϕ = N, (ξ = 1), where F = 0, after which tension
takes over and makes the average force F(ξ) repulsive.

7. Comparison with single DNA molecule formula

An interesting question is if the force F(ξ) generated in
centromeric chromatin can be related to the force-extension
formula obtained by stretching a single DNA molecule in the
laboratory [21]. Obviously, stretching DNA by an external
force is not what happens in living cells and chromatin in SC
pairs contains more than just DNA, e.g. cohesin and histone.
However, the decrease in tension and concomitant removal
of cohesin (i.e. of tension and cohesion) is controlled by
ϕ(ψs) and the histone content is accounted for by the elastic
modulus [37]. From these aspects a comparison should be
possible. If tension in the spindle–SC system were created
by an external force the spatial coherence should be violated
and the system be less correlated. As the spatial coherence in
the actual system is very fragile, the major contribution to the
incoherent correction to F(ξ) in equation (9) should contain no
correlations. Accordingly, as spatial correlations are associated
with nonlinear forces, the incoherent correction term should be
linear in ξ , �F(ξ) = −κ ′ξ and the difference between κ ′ and
κ = 4D2εg2/�2 should be due to modifications of D and �
by the external force.

One complicated way to obtain κ ′ would be to derive the
model from equation (4) with �rλ �= 0 and then subtract the
coherent part defined by equation (9). A simpler feasible way
is to estimate how � and D are modified by the external force.
Thus, � in κ = 4D2εg2/�2 should be replaced by a spacing
proportional to the average stretch χ hence �2 → 〈χλ〉2 =
χ2 = D2ξ 2. However, the force F(ξ) was obtained by the
displacement ξ → −1 + ξ . To be compatible with F(ξ) in
equation (9), �2 should therefore be replaced by D2(1 − ξ)2
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which corresponds to a shift 〈(−D + χλ)〉2 in the discrete
lattice.

Secondly, D2 should be replaced by 〈R2
λ〉= (R2

λ)/2N =
R2

g , Rg being the radius of gyration [46] and Rλ = (±Rλ, 0, 0)
the vector from centre of mass rcm = (0, 0, 0) on the
metaphase plate to the stably attached kinetochores where plus
and minus apply to right- and left-oriented chromosomes, re-
spectively. As R2

g = L2
m/6 [46, 47], where L2

m is the mean
square end-to-end length of the cluster-shaped lattice, and Lm

should equal the average stretch χ, D2 should be replaced by
D2ξ 2/6. However, to be compatible with F(ξ) in equation (9),
〈R2

λ〉 should be correspondingly shifted by D = (D, 0, 0) in
the discrete lattice. Hence, as 〈D · Rλ〉 = D · rcm = 0, it fol-
lows that D2 → 〈(−D + Rλ)

2〉 = D2 + R2
g = D2(1 + ξ 2/6),

the first term being the harmonic force in equation (9). Thus,
with both� and D corrected the force becomes

Fc(ξ) = κC

2(1 − ξ)2
(ξ(1 − ξ)(2 − ξ)+ ξ 3/3)

∝ kBT

p

(
ξ + 1

4(1 − ξ)2
− 1

4

)
, (10)

where C ∼ �2/D2 hence κC ∼ 4εg2 ∼ 3kBT/bK ,
kB is Boltzmann’s constant, T temperature, bK = 2p the
effective Kuhn segment length and p the persistence length.
Equation (9) thus provides a relationship between the force-
extension formula assessed on a single DNA molecule [21],
i.e. the worm-like chain (WLC) model [48], and the collective
spindle–SC interaction (equation (9)). It is also noteworthy
that the collective interaction is formally identical to the earlier
obtained DNA–protein dynamics for replication initiation [49]
provided that the attachment of licencing proteins to origins of
DNA replication is described as a travelling wave with velocity
�ka.

8. Summary and outlook

A non-equilibrium collective spindle–SC interaction, which
seems to explain the most essential properties and functions
of the spindle checkpoint machinery, has been obtained. The
model is founded on the non-equilibrium attachment reaction
of MT plus-ends to vacant kinetochores (equation (1)), which
describes how the density of stably attached kinetochores
increases, and on the spatial correlations between such
kinetochores (equation (5)), which makes the spindle–
SC system increasingly rigid. These two conditions in
combination with the initial boundary constraints for the two
key reactant densities uniquely determine the form of the
spindle–SC interaction. The spatial correlations make the
average force (equation (9)) on and between kinetochores
(figure 2) nonlinearly dependent on the increasing number
of stably attached kinetochores. In the absence of stable
attachments (ξ = 0) and after completed bi-orientation (ξ =
2) the collective average force F(ξ) is exactly equal to the
factual, although vanishing, tension. However, already at
ξ = 2 − 2/N when N − 1 SC pairs are bi-oriented F(ξ)
equals approximately the factual tension and hence also the
factual cohesion which balances the tension (figure 2), because
then only one SC pair remains to come under tension. Near

the anaphase entry the collective force thus describes how
tension and cohesion decrease nonlinearly with the increasing
number of stably attached kinetochores [4] and thus how
the remaining amount of tension becomes equally shared
between bi-oriented SC pairs. This implies a corresponding
equal sharing of the remaining amount of cohesion, ensuring
stability of all bi-oriented SC pairs [6, 13] and blocking of
segregation in metaphase. It also ensures a simultaneous
vanishing of tension and cohesion, and hence a synchronized
segregation and genome integrity [1, 4, 38]. The model
thus seems to confirm the current belief that the spindle
checkpoint monitors the spindle–SC interaction [4]. However,
with continuously changing ψs and ϕ(ψs), a consequence
of continuously variable volume average reactant densities
which are insensitive to detailed regulations on timescales
shorter than the spindle assembly, the spindle–SC interaction is
unable to differ between the non-relaxed state at completed bi-
orientation, and the relaxed state with separated SCs and zero
tension. But in reality ϕ(ψs) changes in a discrete stepwise
manner, which leads to an oscillatory relaxation in anaphase as
will be further discussed here.

When ϕ(ψs) increases, tension decreases and the
collective spindle–SC interaction enforces an equal decrease
in cohesion, i.e. a corresponding removal of cohesin molecules
in the SC pairs. Conversely, in cases when ϕ(ψs) decreases
F(ξ) enforces a genome-wide increase in tension and hence
in cohesion, implying that the model predicts a corresponding
recruitment of cohesin to SC pairs in a genome-wide manner.
In fact, this effect has been observed already in the case of a
single double-strand break (DSB) in DNA. Surprisingly, large
amounts of cohesin were then recruited not only to the SC
pair with damaged DNA but also to the undamaged SC pairs,
strengthening the cohesion in the entire genome [38, 42, 43].
The collective spindle–SC interaction thus provides an
explanation also of this miraculous effect. Cohesin recruited
to the damaged chromosome increases the difference between
the damaged SC pair and the others, thereby reducing the
number of identical (undamaged) stably attached kinetochore–
SC complexes by two units. According to equation (9),
F(ξ) and hence tension and cohesion then increase in
a genome-wide manner, which on the molecular level is
accomplished by a compensatory recruitment of cohesin also
to undamaged SC pairs, blocking segregation until the DSB
repair is finished. From a physical point of view this is not
a miracle.

What happens is that the spindle checkpoint machinery
works on two levels. On the molecular level forces
acting on individual SC pairs are generated by molecular
motors and depolymerizing MTs [27, 28]. However, apart
from actions on the molecular level, these two factors and
regulators and mediators of tension and cohesion, such
as Ilp1/Aurora B, cohesin, Sgo1, Rad61/Wapl, Eco1 and
Mec1 [4, 14–16, 34, 40–43], as well as dynamic and directional
instabilities [10, 25, 29–31], kinetochore oscillations and all
other molecular factors, must comply with the enveloping
conditions, equations (1) and (5) and the boundary constraints.
Consequently, all molecular functions are obliged to comply
with equation (9), implying that the entire system, separate
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compartments and components and their functions are enslaved
by the collective spindle–SC interaction regardless of if ϕ
decreases or increases.

This type of Ginsburg–Landau model has been employed
before to study slow dynamic behaviour of chemical non-
equilibrium systems, however, only in the absence of spatial
correlations [50, 51]. In contrast to inanimate condensed
matter, in which phase transitions are typically controlled
by temperature-dependent order parameters (thermotropic
systems) [19], the metaphase-to-anaphase transition is
regulated by the number of stable attachments, i.e. by
the order parameter ϕ(ψs) which depends non-linearly on
the density of stably attached kinetochores ψs (lyotropic
system) [19]. Beside the spatial correlations (equation (5))
and the initial boundary constraints, the normalization of ϕ(ψs)

by topological quantization [32] is another prerequisite for the
spindle–SC system to sense and count the number of stably
attached kinetochores and to sense the segregation threshold
at ϕ(ψs) = 2N , and hence for an accurate anaphase entry.
The model thus also provides an explanation as to how the cell
might be able to count [52, 53] and how the collective spindle–
SC interaction can distinguish budding yeast (N = 16) from
human cells (N = 46) and others.

In reality ϕ(ψs) and hence tension and cohesion change
in a discrete stepwise manner with the increasing number of
stable attachments. This induces a genome-wide stepwise
decrease in tension and cohesion, ensuring a sufficiently
smooth relaxation of tension down to the synchronized removal
of the last linkages at the telomeres. Together with a normal
telomere function, the stepwise removal of cohesion is thus
crucial for a flawless segregation of replicated chromosomes.
Bi-orientation of the last SC pair triggers the transition to
anaphase in which the remaining amount of tension and
cohesion is removed by proteolytic cleavage of the remaining
cohesin molecules in the chromosome arms [34, 44, 45]. The
corresponding relaxation of tension in centromeric chromatin
is mediated by kinetochore oscillations which have been
experimentally observed [20]. These oscillations, which take
place on a timescale shorter than that required for spindle
assembly, were successfully analysed here by a time-dependent
perturbation analysis of the collective spindle–SC interaction.
That rigidly coupled collections of molecular motors can lead
to spontaneous oscillations has been shown also in other
model systems [54–57]. However, in the actual case both
the oscillatory spectrum and the segregation threshold were
derived directly from a self-consistent exactly solvable model,
i.e. from the collective spindle–SC interaction, to mention just
some differences.

It was thus found that the perturbed collective spindle–
SC interaction predicts kinetochore oscillations at a frequency
f ≈ (0.88 ± 0.43) min−1, which is in satisfactory
agreement with the frequency observed about 5 min prior
to segregation [20] at f ≈ 1.0 min−1. Segregation is
predicted to take place at a threshold ‘frequency’ fth ≈
1.02 min−1 and ‘wavelength’ λth ≈ 0.8 D. The model
thus provides explanations as to how the system of stably
attached kinetochores/chromosomes could control the spindle
checkpoint functions, such as the anaphase onset, and how it

might decide to segregate replicated chromosomes [58]. The
good agreement between derived and assessed frequencies
of kinetochore oscillations and the fact that the oscillatory
spectrum also contains a threshold at which SC pairs separate
suggest that Cdc20 activation by APC and proteolytic cleavage
of cohesin might be mediated by concomitant oscillations
in the conformation of the MCC-complex [40, 44, 59, 60].
However, as the collective spindle–SC interaction is just a
mean-field theory, the exact numbers obtained for frequencies
and wavelengths must be taken with caution.

Apart from providing an extended knowledge about
division of normal cells, this model might also improve
the understanding of aneuploidy and cancerous cell division.
The formal identity of equation (9) with the protein–DNA
dynamics governing DNA replication initiation [49], and
the loose analogy between the signal transduction network
preceding replication initiation and the response induced by
DNA damage [61], leads to speculation that one and the
same non-equilibrium collective DNA dynamics might be able
to control the entire cell cycle by regulating the transitions
near and at the checkpoints. Obviously, the key reactants
are not the same at all these transitions and the dynamics
between the checkpoints is expected to be much more complex.
Many questions remain to be further studied, such as the
spatial dependence of polar ejection forces and how they
contribute to directional instability effects and the transport
of SC pairs to the metaphase plate. In the actual model
this transport has been treated as a constant time lag without
impact on the collective spindle–SC interaction. It also
remains to experimentally distinguish directional instability
effects (oscillations of SC pairs) from oscillations in the
distance between sister kinetochores. The hypothesis that
conformational changes in the MCC could mediate the
activation of APC by Cdc20 and subsequent proteolytic
removal of cohesin, must also be further studied. However, the
proposed collective spindle–SC interaction seems to fulfil the
most essential spindle checkpoint functions and might hence
serve as a platform for continued studies. The relationship
defined by equation (10) might help to relate observations
in single DNA and chromatin molecule studies to living cell
conditions. Moreover, by further studies of living condensed
matter systems, the non-equilibrium statistical mechanics
defined by equations (1), (2), (5) and the normalization by
topological quantization can hopefully be developed to a more
general statistical physics theory for ‘rigid’ non-equilibrium
condensed matter systems.
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